Question : If $\tan^{2}\alpha=1+2\tan^{2}\beta$ ($\alpha,\beta$ are positive acute angles), then $\sqrt2\: \cos\alpha -\cos\beta$ is equal to:
Option 1: $0$
Option 2: $\sqrt2$
Option 3: $1$
Option 4: $–1$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : $\tan^{2}\alpha=1+2\tan^{2}\beta$ $⇒\sec^{2}\alpha-1=1+2(\sec^{2}\beta-1)$ $⇒\sec^{2}\alpha-1=2\sec^{2}\beta-1$ $⇒\frac{1}{\cos^{2}\alpha}=\frac{2}{\cos^{2}\beta}$ Taking square root on both sides, we get, $⇒\sqrt2\cos\alpha=\cos\beta$ $⇒\sqrt2\cos\alpha-\cos\beta=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\alpha$ and $\beta$ are positive acute angles, $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$, then the value of $\sin (\alpha +2\beta)$ is:
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\alpha +\beta =90^{\circ}$, then the expression $\frac{\tan \alpha}{\tan \beta}+\sin^{2}\alpha+\sin^{2}\beta$ is equal to:
Question : If $\alpha +\beta =90^{0}$, then value of $\left (1-\sin^{2}\alpha \right)\left (1-\cos^{2}\alpha \right)\times \left (1+\cot^{2}\beta \right)\left (1+\tan^{2}\beta \right)$ is:
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile