Question : If $\tan \theta+\sec \theta=7, \theta$ being acute, then the value of $5 \sin \theta$ is:
Option 1: $\frac{25}{24}$
Option 2: $\frac{24}{25}$
Option 3: $\frac{1}{24}$
Option 4: $\frac{24}{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{24}{5}$
Solution : Given: $\tan\theta+\sec\theta=7$ --------------------(1) We know that $\sec^2\theta-\tan^2\theta=1$ ⇒ $(\sec\theta+\tan\theta)(\sec\theta-\tan\theta)=1$ ⇒ $7×(\sec\theta-\tan\theta)=1$ ⇒ $\sec\theta-\tan\theta=\frac{1}{7}$ --------------------(2) Adding equations (1) and (2) we get, $2\sec\theta=7+\frac{1}{7}$ ⇒ $\sec\theta=\frac{25}{7}$ ⇒ $\cos\theta=\frac{7}{25}$ ⇒ $\sin\theta=\sqrt{1-(\frac{7}{25})^2}$ ⇒ $\sin\theta=\frac{24}{25}$ ⇒ $5\sin\theta=\frac{24}{5}$ Hence, the correct answer is $\frac{24}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sec^2 \theta+\tan^2 \theta=\frac{25}{18}$, the value of $\sec^4 \theta-\tan^4 \theta$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : Find the value of: $\sqrt{\frac{1 - \sin 3 \theta}{1 + \sin 3 \theta}}$
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : If $\sec \theta+\tan \theta=3$, then the value of $\sec \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile