Question : If $\frac{a}{q-r}=\frac{b}{r-p}=\frac{c}{p-q}$, find the value of $(pa+qb+rc)$.
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: –1
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $\frac{a}{q-r}=\frac{b}{r-p}=\frac{c}{p-q}$ Let $\frac{a}{q-r}=\frac{b}{r-p}=\frac{c}{p-q}=k$ $\frac{a}{q-r}=k$ Multiplying by $p$, we get: $pa=k(pq-pr)$ -------------------(1) Similarly, $qb=k(qr-qp)$ ------------------(2) and $rc=k(rp-rq)$ --------------------------(3) Adding equations (1), (2), and (3), we get, $⇒pa+qb+rc=k(pq-pr+qr-qp+rp-rq)$ $\therefore pa+qb+rc=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Question : The value of $\frac{p^{2}- (q - r)^{2}}{(p + r)^{2} - (q)^{2}}$ + $\frac{q^{2} - (p - r)^{2}}{(p + q)^{2} - (r)^{2}}$ + $\frac{r^{2}- (p - q)^{2}}{(q + r)^{2} - (p)^{2}}$ is:
Question : If $p+q+r=pqr=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$, find $\mathrm{p}^3+\mathrm{q}^3+\mathrm{r}^3$.
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile