Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Option 1: $\frac{19}{5}$
Option 2: $\frac{22}{3}$
Option 3: $\frac{37}{12}$
Option 4: $\frac{37}{19}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{19}{5}$
Solution : $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}$ Using the identity $\sec \theta = \frac{1}{\cos \theta}$ and $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\frac{\frac{1}{cos\theta}-\frac{\sin \theta}{\cos \theta}}{\frac{1}{cos\theta}+\frac{\sin\theta}{\cos\theta}}=\frac{1}{7}$ $⇒\frac{1-\sin \theta}{1+\sin \theta}=\frac{1}{7}$ On applying componendo and dividendo, $⇒\sin \theta = \frac{3}{4}$ Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, $⇒\cos \theta = \frac{\sqrt{7}}{4}$ Substituting these values into the expression $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$, $=\frac{\frac{4}{3}+\left(\frac{\sqrt{7}}{3}\right)^2}{\frac{4}{3}-\left(\frac{\sqrt{7}}{3}\right)^2} =\frac{\frac{4}{3}+\frac{7}{9}}{\frac{4}{3}-\frac{7}{9}} = \frac{19}{5}$ Hence, the correct answer is $\frac{19}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Question : For any real values of $\theta, \sqrt{\frac{\sec\theta \:-\: 1}{\sec\theta \:+\: 1}}=$?
Question : $(\sin \theta+\operatorname{cosec} \theta)^2+(\cos \theta+\sec \theta)^2=$?
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile