Question : If $0°<\theta<90°$, the value of $\sin\theta+\cos\theta$ is:
Option 1: Equal to 1
Option 2: Greater than 1
Option 3: Less than 1
Option 4: Equal to 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: Greater than 1
Solution : $\sin\theta+\cos\theta$ where $0°<\theta<90°$ Putting the value of $\theta=45°$, we have, $\sin 45°+\cos45°=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}$ ⇒ $\sin 45°+\cos45° =\frac{2}{\sqrt{2}}=\sqrt{2}$ Here, $\sqrt{2}=1.414>1$ Hence, the correct answer is greater than 1.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $7\sin^2\ \theta+3\cos^2\ \theta=4, (0°<\theta<90°)$, then find the value of $\tan\theta$:
Question : If $\sin5\theta = \cos 20° (0°<\theta<90°)$, then the value of $\theta$ is:
Question : $\frac{(1+\sec \theta \operatorname{cosec} \theta)^2(\sec \theta-\tan \theta)^2(1+\sin \theta)}{(\sin \theta+\sec \theta)^2+(\cos \theta+\operatorname{cosec} \theta)^2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : If $\sin ^2 \theta-3 \sin \theta+2=0$, then find the value of $\theta\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile