Question : If $\sec^2 \theta+\tan^2 \theta=\frac{25}{18}$, the value of $\sec^4 \theta-\tan^4 \theta$ is:
Option 1: $\frac{18}{25}$
Option 2: $\frac{25}{12}$
Option 3: $\frac{25}{9}$
Option 4: $\frac{25}{18}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{25}{18}$
Solution : Given: $\sec^2 \theta+\tan^2 \theta=\frac{25}{18}$ To find: $\sec^4 \theta-\tan^4 \theta$ We know that $\sec^2 \theta-\tan^2 \theta=1$ Now, $\sec^4 \theta-\tan^4 \theta=(\sec^2 \theta+\tan^2 \theta)(\sec^2 \theta-\tan^2 \theta)$ $=(\frac{25}{18})(1)$ $=\frac{25}{18}$ Hence, the correct answer is $\frac{25}{18}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : Find the value of: $\sqrt{\frac{1 - \sin 3 \theta}{1 + \sin 3 \theta}}$
Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Question : If $\cos \theta=\frac{5}{13}$, then the value of $\tan ^2 \theta+\sec ^2 \theta$ is equal to:
Question : If $\sec \theta+\tan \theta=3$, then the value of $\sec \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile