Question : If $\tan \mathrm{A}=\frac{3}{4}$, then find the value of the following expression $\frac{6 \sin A}{1-\sin A}$.
Option 1: 18
Option 2: 9
Option 3: 24
Option 4: 12
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 9
Solution : Given: $\tan \mathrm{A}=\frac{3}{4}$ We know that $\tan \theta=\frac{\text{Perpendicular}}{\text{Base}}=\frac{3}{4}$ Let perpendicular = $3k$ and base = $4k$ [where $k$ is a non zero constant] So, Hypotenuse $=\sqrt{(3k)^2+(4k)^2}=\sqrt{25k^2}=5k$ ⇒ $\sin A =\frac{\text{Perpendicular}}{\text{Hypotenuse}}=\frac{3k}{5k}=\frac{3}{5}$ Now, $\frac{6 \sin A}{1-\sin A}$ $= \frac{6 ×\frac{3}{5}}{1-\frac{3}{5}}$ $= \frac{\frac{18}{5}}{\frac{2}{5}}$ $=9$ Hence, the correct answer is 9.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cot A=\frac{5}{12}$, find the value of the following expression: $\frac{5\left(1-\cos^2 A\right)}{6\left(1-\sin^2 A\right)}$
Question : If $\operatorname{tan} \theta=\frac{3}{4}$, then find the value of expression $\frac{1+\operatorname{sin} \theta}{1-\operatorname{sin} \theta}$.
Question : If $\mathrm{N}+\frac{1}{\mathrm{~N}}=\sqrt{3}$, then find the value of $\mathrm{N}^6+\frac{1}{\mathrm{~N}^6}+11$.
Question : In a right-angled triangle $\mathrm{XYZ}$, if $\mathrm{X}=60^{\circ}$ and $\mathrm{Y}=30^{\circ}$, then find the value of $\sin (\mathrm{X}-\mathrm{Y})$.
Question : If $4 \sin ^2 \mathrm{A}-3=0$ and $0 \leq \mathrm{A} \leq 90^{\circ}$, then $3 \sin \mathrm{A}-4 \sin ^3 \mathrm{A}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile