Question : If $\frac{x}{(b–c)(b+c–2a)}=\frac{y}{(c–a)(c+a–2b)}=\frac{z}{(a–b)(a+b–2c)}$, then $(x+y+z)$ is:
Option 1: $a+b+c$
Option 2: $0$
Option 3: $a^2+b^2+c^2$
Option 4: $2$
Correct Answer: $0$
Solution : Given: $\frac{x}{(b–c)(b+c–2a)}=\frac{y}{(c–a)(c+a–2b)}=\frac{z}{(a–b)(a+b–2c)}$ Let $\frac{x}{(b–c)(b+c–2a)}=\frac{y}{(c–a)(c+a–2b)}=\frac{z}{(a–b)(a+b–2c)}=k$. ${x}=k{(b–c)(b+c–2a)}$ (equation 1) ${y}=k{(c–a)(c+a–2b)}$ (equation 2) ${z}=k{(a–b)(a+b–2c)}$ (equation 3) Adding equations 1, 2, and 3 respectively, we get, $x+y+z=k{(b–c)(b+c–2a)}+k{(c–a)(c+a–2b)}+k{(a–b)(a+b–2c)}$ $x+y+z=k[(b–c)(b+c–2a)+(c–a)(c+a–2b)+(a–b)(a+b–2c)]$ $x+y+z= k[b^2+bc–2ab–bc–c^2+2ac+c^2+ac–2bc–ac–a^2+2ab+a^2+ab–2ac–ab–b^2+2bc)$ $x+y+z$ = 0 Hence, the correct answer is 0.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Question : If $\frac{1}{x+2}=\frac{3}{y+3}=\frac{1331}{z+1331}=\frac{1}{3}$, then what is the value of $\frac{x}{x+1}+\frac{y}{y+6}+\frac{z}{z+2662}$?
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile