Question : If $\frac{\cos\alpha}{\cos\beta}=a$, $\frac{\sin\alpha}{\sin\beta}=b$, then $\sin^{2}\beta$ is equal to:
Option 1: $\frac{a^{2}–1}{a^{2}+b^{2}}$
Option 2:
$\frac{a^{2}+1}{a^{2}–b^{2}}$
Option 3:
$\frac{a^{2}-1}{a^{2}-b^{2}}$
Option 4:
$\frac{a^{2}+1}{a^{2}+b^{2}}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer:
Solution : Given: $\frac{\cos\alpha}{\cos\beta}=a$ and $\frac{\sin\alpha}{\sin\beta}=b$ ⇒ $\cos\alpha=a\cos\beta$------------------------(1) ⇒ $\sin\alpha=b\sin\beta$-------------------------(2) Squaring and adding the equations (1) and (2), we have, $\cos^{2}\alpha+\sin^{2}\alpha=a^{2}\cos^{2}\beta+b^{2}\sin^{2}\beta$ ⇒ $1=a^{2}\cos^{2}\beta+b^{2}\sin^{2}\beta$ ⇒ $1=a^{2}(1-\sin^{2}\beta)+b^{2}\sin^{2}\beta$ ⇒ $1=a^{2}-a^{2}\sin^{2}\beta+b^{2}\sin^{2}\beta$ ⇒ $a^{2}-1=\sin^{2}\beta(a^{2}-b^{2})$ $\therefore\sin^{2}\beta=\frac{a^{2}-1}{a^{2}-b^{2}}$ Hence, the correct answer is $\frac{a^{2}-1}{a^{2}-b^{2}}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\alpha$ and $\beta$ are positive acute angles, $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$, then the value of $\sin (\alpha +2\beta)$ is:
Question : If $\sin(A+B)=\sin A\cos B+\cos A \sin B$, then the value of $\sin75°$ is:
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\alpha +\beta =90^{\circ}$, then the expression $\frac{\tan \alpha}{\tan \beta}+\sin^{2}\alpha+\sin^{2}\beta$ is equal to:
Question : If $(r\cos \theta -\sqrt{3})^{2}+(r\sin \theta -1)^{2}=0$, then the value of $\frac{r\tan \theta +\sec \theta}{r\sec \theta +\tan\theta}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile