Question : If $\sec \theta+\tan \theta=5, (\theta \neq 0)$, then $\sec \theta$ is equal to:
Option 1: $\left(5+\frac{1}{5}\right)$
Option 2: $\frac{1}{2}\left(3+\frac{1}{3}\right)$
Option 3: $\frac{1}{2}\left(5+\frac{1}{5}\right)$
Option 4: $\left(3+\frac{1}{3}\right)$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}\left(5+\frac{1}{5}\right)$
Solution : Given: $\sec \theta+\tan \theta=5$ ..... equation1 $\sec^{2}\theta - \tan^{2}\theta =1$ ⇒ $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$ ⇒ $\sec \theta-\tan \theta=\frac{1}{5}$......equation2 Adding equation1 and equation2 $2\sec\theta = 5 + \frac{1}{5}$ ⇒ $\sec\theta=\frac{1}{2}\left(5+\frac{1}{5}\right)$ Hence, the correct answer is $\frac{1}{2}\left(5+\frac{1}{5}\right)$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{1+\sin \theta}{\cos \theta}$ is equal to which of the following (where $\left.\theta \neq \frac{\pi}{2}\right)?$
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : If $\sec \theta+\tan \theta=3$, then the value of $\sec \theta$ is:
Question : The value of
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile