Question : If $\alpha +\beta =90^{\circ}$, then the expression $\frac{\tan \alpha}{\tan \beta}+\sin^{2}\alpha+\sin^{2}\beta$ is equal to:
Option 1: $\sec^{2}\beta$
Option 2: $\tan^{2}\alpha$
Option 3: $\tan^{2}\beta$
Option 4: $\sec^{2}\alpha$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sec^{2}\alpha$
Solution : Given: $\alpha +\beta =90^{\circ}$ Since $\alpha +\beta =90^{\circ}$ $\alpha = 90^{\circ} - \beta$ $\tan\alpha = \tan (90^{\circ} - \beta) = \cot \beta$ $\sin\alpha = \sin (90^{\circ} - \beta) = \cos\beta$. From the given expression, $\frac{\tan \alpha}{\tan \beta}+\sin^{2}\alpha+\sin^{2}\beta$ $ =\frac{\cot \beta}{\tan \beta} + \cos^{2}\beta + \sin^{2}\beta$ $= \cot^{2}\beta + 1$ $= \operatorname{cosec^{2}\beta}$ $= \operatorname{cosec}^{2}(90^{\circ} - \alpha)$ $= \sec^{2}\alpha$ Hence, the correct answer is $\sec^{2}\alpha$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\alpha \sin 45^{\circ}=\beta \operatorname{cosec} 30^{\circ}$, then $\frac{\alpha^4}{ \beta^4}$ is:
Question : The value of $\frac{\operatorname{sin} 58^{\circ}}{\cos 32^{\circ}}+\frac{\sin 55^{\circ} \sec 35^{\circ}}{\tan 5^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$ is equal to:
Question : If $\sin \alpha=\frac12$ and $\sin \beta=\frac12$, then what is the value of $\cos (\alpha+\beta)$? $(0°<\alpha, \beta<90° )$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile