Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Option 1: 1
Option 2: –1
Option 3: 0
Option 4: –2
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –2
Solution : Given: $(x+\frac{1}{x})=–2$ ⇒ $(x+\frac{1}{x})^2=(–2)^2$ ⇒ $x^2+\frac{1}{x^2}+2=4$ ⇒ $x^2+\frac{1}{x^2}=2$ So, $(x^4+\frac{1}{x^4})=(x^2+\frac{1}{x^2})^2-2=2^2-2$ ⇒ $(x^4+\frac{1}{x^4})=4-2$ ⇒ $(x^4+\frac{1}{x^4})=2$ Also, $(x^3+\frac{1}{x^3})=(x+\frac{1}{x})^3-3(x+\frac{1}{x})=(–2)^3–3×–2$ ⇒ $(x^3+\frac{1}{x^3})=–8+6$ ⇒ $(x^3+\frac{1}{x^3})=–2$ So, $(x^7+\frac{1}{x^7})= [x^3+\frac{1}{x^3}][x^4+\frac{1}{x^4}]–[x+\frac{1}{x}]=-2×2-(-2)=-2$ Hence, the correct answer is –2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{1}{6}$ of $x$ – $\frac{7}{2}$ of $\frac{3}{7}$ equals to $(-\frac{7}{4})$, then the value of $x$ is:
Question : If $x+ \frac{1}{x} =2$, then the value of $({x}^{99}+ \frac{1}{x^{99}} –2)$ is:
Question : If $x^2+\frac{1}{x^2}=2$, then the value of $x-\frac{1}{x}$ is:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile