Question : If $\tan (\alpha+\beta)=a, \tan (\alpha-\beta)=b$, then the value of $\tan 2 \alpha$ is:
Option 1: $\frac{a+b}{1-a b}$
Option 2: $\frac{a+b}{1+a b}$
Option 3: $\frac{a-b}{1+a b}$
Option 4: $\frac{a-b}{1-a b}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{a+b}{1-a b}$
Solution : Given, $\tan (\alpha+\beta)=a$ and $\tan (\alpha-\beta)=b$ $\tan{2\alpha}=\tan((\alpha + \beta)+(\alpha - \beta)) = \frac{\tan(\alpha+\beta) + \tan(\alpha - \beta)}{1-\tan(\alpha + \beta)\tan(\alpha - \beta)}= \frac{a+b}{1-ab}$ Hence, the correct answer is $\frac{a+b}{1-ab}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan(\alpha -\beta)=1,\sec(\alpha +\beta)=\frac{2}{\sqrt{3}}$ and $\alpha ,\beta$ are positive, then the smallest value of $\alpha$ is:
Question : If $\alpha+\beta=90^{\circ}$ and $\alpha=2 \beta$, then the value of $3 \cos ^2 \alpha-2 \sin ^2 \beta$ is equal to:
Question : If $\tan (\alpha+\beta)=\sqrt{3}, \tan (\alpha-\beta)=1$ where $(\alpha+\beta)$ and $(\alpha-\beta)$ are acute angles, then what is $\tan$ $(6 \alpha) ?$
Question : If $\tan 40^{\circ}=\alpha$, then find $\frac{\tan 320^{\circ}-\tan 310^{\circ}}{1+\tan 320^{\circ} \cdot \tan 310^{\circ}}$.
Question : What is $\sin \alpha - \sin\beta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile