Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Option 1: –1
Option 2: 1
Option 3: 2
Option 4: 4
Correct Answer: 1
Solution : Given: $x^2 = y+z,y^2 = z+x$ and $z^2 = x+y$ Now, $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ = ($\frac{x}{x+x^2}+\frac{y}{y+y^2}+\frac{z}{z+z^2})$ = ($\frac{x}{x+y+z}+\frac{y}{y+x+z}+\frac{z}{z+x+y})$ = ($\frac{x+y+z}{x+y+z}$) = 1 Hence, the correct answer is 1.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x+y=2z$, then the value of $\frac{x}{x-z}+\frac{z}{y-z}$ is:
Question : If $\frac{1}{x+2}=\frac{3}{y+3}=\frac{1331}{z+1331}=\frac{1}{3}$, then what is the value of $\frac{x}{x+1}+\frac{y}{y+6}+\frac{z}{z+2662}$?
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile