Question : If $(\sqrt 3 +1)^{2}=x+\sqrt 3 y$, then the value of $(x+y)$ is:
Option 1: 2
Option 2: 4
Option 3: 6
Option 4: 8
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 6
Solution : Given: $(\sqrt{3}+1)^2 = x+\sqrt{3}y$ ⇒ $(3+1+2\sqrt{3})=x+\sqrt{3}y$ ⇒ $(4+2\sqrt{3})=x+\sqrt{3}y$ Comparing both sides, we get $x=4$ and $y =2$. Thus, $(x+y)=(4+2)=6$ Hence, the correct answer is 6.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Question : If $y=1+\sqrt{3}+\sqrt{4}$, then the value of $2 y^4-8 y^3-6 y^2+28 y-84$ is:
Question : Simplify the expression $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$, where $x=2$ and $y=3$.
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile