Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Option 1: $a+1$
Option 2: $\frac{1}{2}(a+1)$
Option 3: $\frac{1}{2}(a–1)$
Option 4: $a–1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}(a–1)$
Solution : Given: $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$ $⇒2x=\sqrt{a}+\frac{1}{\sqrt{a}}$ $⇒x=\frac{1}{2}(\sqrt{a}+\frac{1}{\sqrt{a}})$ Calculating the value of ${\sqrt{x^{2}-1}}$ $⇒{\sqrt{x^{2}-1}}={\sqrt{(\frac{1}{2}(\sqrt{a}+\frac{1}{\sqrt{a}}))^{2}-1}}$ $⇒{\sqrt{(\frac{a^2-2a+1}{4a})}}=\frac{a-1}{2\sqrt{a}}$ So that $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ becomes $⇒\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}=\frac{\frac{a-1}{2\sqrt{a}}}{\frac{1}{2}(\sqrt{a}+\frac{1}{\sqrt{a}})-(\frac{a-1}{2\sqrt{a}})}$ $⇒\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}=\frac{a-1}{2\sqrt{a}}×\frac{2\sqrt{a}}{2}=\frac{1}{2}(a–1)$ Hence, the correct answer is $\frac{1}{2}(a–1)$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x$ = ${\frac{1}{\sqrt{2}+1}}$, then the value of $(x^{2}+2x–1)$ is:
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x=\sqrt{a}+\frac{1}{\sqrt{a}}$ and $y=\sqrt{a}-\frac{1}{\sqrt{a}}, (a>0),$ then the value of $(x^{4}+y^{4}-2x^{2}y^{2})$ is:
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Question : If $x^4+\frac{16}{x^4}=15617, x>0$, then find the value of $x+\frac{2}{x}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile