Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Option 1: $\frac{1}{2}$
Option 2: $\frac{1}{3}$
Option 3: $\frac{2}{3}$
Option 4: $3$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{3}$
Solution : Given: $(4x+\frac{1}{x})=5$ ⇒ $\frac{4x^{2}+1}{x}=5$ ⇒ $4x^{2}+1=5x$ ⇒ $4x^{2}=5x-1$ Now, putting the value of $4x^{2}$ in $\frac{5x}{4x^{2}+10x+1}$ $=\frac{5x}{5x–1+10x+1}=\frac{5x}{15x}=\frac{1}{3}$ Hence, the correct answer is $\frac{1}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $\sec \theta+\tan \theta=5, (\theta \neq 0)$, then $\sec \theta$ is equal to:
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $\left (x+\frac{1}{x}\right )=5$, find the value of $\frac{6x}{x^{2}+x+1}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile