Question : If $\sec( 4x-50°)=\operatorname{cosec}( 50°-x)$, then the value of $x$ is:
Option 1: 45°
Option 2: 90°
Option 3: 30°
Option 4: 60°
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 30°
Solution : Given: $\sec( 4x-50°)=\operatorname{cosec}( 50°-x)$ ⇒ $\sec( 4x-50° )=\sec(90°-( 50°-x)$ ⇒ $(4x-50°)=(90°-( 50°-x)$ ⇒ $4x-50°=90°-50°+x$ ⇒ $3x=90°$ ⇒ $x=30°$ Hence, the correct answer is 30°.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\operatorname{cosec}^{2}60°+\sec^{2}60°– \cot^{2}60°+\tan^{2}30°$ will be:
Question : If $x \sin 45° = y\operatorname{cosec} 30°$, then $\frac{x^4}{y^4}$ is equal to:
Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of
Question : If $α$ is an acute angle, $\tan (4α − 50°) = \cot (50° − α)$, then find the value of $α$ (in degrees).
Question : If $x\cos^{2}30^{\circ}\cdot \sin60^{\circ}=\frac{\tan^{2}45^{\circ}\cdot \sec60^{\circ}}{\operatorname{cosec}60^{\circ}}$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile