Question : If $2(x^{2}+\frac{1}{x^{2}})-(x-\frac{1}{x})-7=0$, then two values of $x$ are:
Option 1: $1, 2$
Option 2: $2,-\frac{1}{2}$
Option 3: $0, 1$
Option 4: $\frac{1}{2},1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2,-\frac{1}{2}$
Solution : Given: $2(x^{2}+\frac{1}{x^{2}})-(x-\frac{1}{x})-7=0$ We know that, $x^{2}+\frac{1}{x^{2}} = (x-\frac{1}{x})^2+2$ ⇒ $2[(x-\frac{1}{x})^2+2]-(x-\frac{1}{x})-7=0$ Put $x-\frac{1}{x}=t$ ⇒ $2t^2+4-t-7=0$ ⇒ $2t^2-t-3=0$ ⇒ $2t^2-3t+2t-3=0$ ⇒ $t(2t-3)+1(2t-3)=0$ ⇒ $(2t-3)(t+1)=0$ $\therefore t=\frac{3}{2}$ or, $ -1$ Now if, $x-\frac{1}{x}=\frac{3}{2}$ ⇒ $2x^2-2=3x$ ⇒ $2x^2-3x-2=0$ ⇒ $2x^2-4x+x-2=0$ ⇒ $2x(x-2)+1(x-2)=0$ ⇒ $(x-2)(2x+1)=0$ $\therefore x = 2$ or, $x = -\frac{1}{2}$ Other two values you can also find by solving $x-\frac{1}{x}=-1$ Hence, the correct answer is $2$ or $-\frac{1}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x+\frac{1}{x}=-2$, then what is the value of $x^7+x^{-7}+x^2+x^{-2} ?(\mathrm{x}<0)$
Question : If $x+\frac{2}{x}=1$, then the value of $\frac{x^2+7x+2}{x^2+13x+2}$ is:
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Question : If $x+\frac{1}{x}=2$, then the value of $x^{11}+\frac{1}{x^{20}}$ is:
Question : If $x^4+\frac{1}{x^4}=194, x>0$, then find the value of $x^3+\frac{1}{x^3}+x+\frac{1}{x}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile