Question : If $\alpha +\beta =90^{0}$, then value of $\left (1-\sin^{2}\alpha \right)\left (1-\cos^{2}\alpha \right)\times \left (1+\cot^{2}\beta \right)\left (1+\tan^{2}\beta \right)$ is:
Option 1: 1
Option 2: –1
Option 3: 0
Option 4: 2
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $\alpha +\beta = 90° ⇒ \alpha = 90° - \beta$ Using identities: $\cos^2\alpha + \sin^2\alpha = 1$ , $\cot^2\alpha +1 = \text{cosec}^2\alpha$ and $\tan^2\alpha +1 = \sec^2\alpha$, we get: $\left (1-\sin^{2}\alpha \right)\left (1-\cos^{2}\alpha \right)\times \left (1+\cot^{2}\beta \right)\left (1+\tan^{2}\beta \right)$ $=\cos^2\alpha \sin^2\alpha \times \text{cosec}^2\beta \sec^2\beta$ $=\cos^2(90-\beta) \sin^2 (90-\beta) \times \text{cosec}^2\beta \sec^2\beta$ $=\sin^2\beta \cos^2 \beta \times \text{cosec}^2\beta \sec^2\beta$ $=1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\tan^{2}\alpha=1+2\tan^{2}\beta$ ($\alpha,\beta$ are positive acute angles), then $\sqrt2\: \cos\alpha -\cos\beta$ is equal to:
Question : If $\alpha +\beta =90^{\circ}$, then the expression $\frac{\tan \alpha}{\tan \beta}+\sin^{2}\alpha+\sin^{2}\beta$ is equal to:
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\sin \alpha=\frac12$ and $\sin \beta=\frac12$, then what is the value of $\cos (\alpha+\beta)$? $(0°<\alpha, \beta<90° )$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile