Question : If $\sin \alpha+\cos \alpha=\frac{2}{\sqrt{3}}$, then what is $(\tan \alpha+\cot \alpha)$ equal to?
Option 1: 1
Option 2: 2
Option 3: 6
Option 4: 0
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 6
Solution : $\sin \alpha+\cos \alpha=\frac{2}{\sqrt{3}}$ Square both sides, $(\sin \alpha+\cos \alpha)^2=\left(\frac{2}{\sqrt{3}}\right)^2$ ⇒ $\sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = \frac{4}{3}$ ⇒ $1 + 2\sin \alpha \cos \alpha = \frac{4}{3}$ ⇒ $2\sin \alpha \cos \alpha = \frac{4}{3} - 1 = \frac{1}{3}$ ⇒ $\sin \alpha \cos \alpha = \frac{1}{6}$ ...........................................(i) Now, $\tan \alpha + \cot \alpha = \frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = \frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cos \alpha}$ From (i) $\tan \alpha + \cot \alpha = \frac{1}{\frac{1}{6}} = 6$ So, $\tan \alpha + \cot \alpha = 6$ Hence, the correct answer is 6.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\cos 5 \alpha=\sin \alpha$ and $5 \alpha<90^{\circ}$, then the value of $\tan 2 \alpha$ is:
Question : If $\tan \alpha=\frac{1}{\sqrt{3}}$ and $\tan \beta=\sqrt{3}$ then what is the value of $\cos (\alpha+\beta)$?
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile