Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Option 1: $0$
Option 2: $\frac{1}{3}$
Option 3: $1$
Option 4: $3$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3$
Solution : Given: $x+y+z=0$ So, $x^3+y^3+z^3=3xyz$ $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$ = $\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}$ = $\frac{x^3+y^3+z^3}{xyz}$ = $\frac{3xyz}{xyz}$ = $3$ Hence, the correct answer is $3$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z=0$, then the value of $\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}$ is:
Question : If $\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3$, then what is the value of $(x+y+z)^3$?
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{3z}+\frac{y^3}{3xz}+\frac{z^2}{3x}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile