Question : If $a^4+\frac{1}{a^4}=194$, then what is the value of $a^3+\frac{1}{a^3} ?$
Option 1: 44
Option 2: 52
Option 3: 48
Option 4: 50
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 52
Solution : Given: $a^4+\frac{1}{a^4}=194$ Adding 2 both sides, we get: ⇒ $a^4+\frac{1}{a^4}+2=194+2$ Now, ⇒ $(a^2+\frac{1}{a^2})^2=14^2$ ⇒ $(a^2+\frac{1}{a^2})=14$ Again, adding 2 both sides, we get: ⇒ $a^2+\frac{1}{a^2}+2=14+2$ ⇒ $(a+\frac{1}{a})^2=4^2$ ⇒ $a+\frac{1}{a}=4$ Now, cubing both sides, we get: $a^3+\frac{1}{a^3}+3×a×\frac{1}{a}(a+\frac{1}{a})=64$ ⇒ $a^3+\frac{1}{a}^3+3\times 4 = 64$ ⇒ $a^3+\frac{1}{a^3}=52$ Hence, the correct answer is 52.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $t^{2}-4t+1=0,$ then the value of $t^3+\frac{1}{t^3}$ is:
Question : If $p^2+\frac{1}{p^2}=14$, then find the value of $\left(p^3+\frac{1}{p^3}\right)$.
Question : If $x^4+\frac{1}{x^4}=194, x>0$, then find the value of $x^3+\frac{1}{x^3}+x+\frac{1}{x}$
Question : If $a+\frac{1}{a}=2$ and $b+\frac{1}{b}=-2$, then what is the value of $a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2} ?$
Question : If $\frac{x^2+1}{x}=5$, then find the value of $x^4+\frac{1}{x^4}-36$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile