Question : If $\sin Y=x$, then what will be the value of $\cos 2Y\left(\right.$ where $\left.0 \leq Y \leq 90^{\circ}\right)$?
Option 1: $(\sqrt{ 2} -1) x$
Option 2: $\sqrt{2} x$
Option 3: $1-2 x$
Option 4: $1-2 x^2$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1-2 x^2$
Solution : Given, $\sin Y=x$ Now, $\cos 2 Y=1-2\sin^2A=1-2x^2$ Hence, the correct answer is $1-2x^2$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $0\leq\theta\leq 90^{\circ}$ and $4\cos^{2}\theta-4\sqrt{3}\cos\theta+3=0$, then the value of $\theta$ is:
Question : The value of $\theta$ $ \left ( 0\leq \theta \leq 90^{\circ} \right )$ satisfying $2\sin^{2}\theta = 3\cos \theta$ is:
Question : If $\sin ^2 \theta-3 \sin \theta+2=0$, then find the value of $\theta\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$.
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile