Question : If $\frac{x^{3}+3y^{2}x}{y^{3}+3x^{2}y}=\frac{35}{19}$, what is $\frac{x}{y} =?$
Option 1: $\frac{7}{6}$
Option 2: $\frac{5}{6}$
Option 3: $\frac{5}{1}$
Option 4: $\frac{7}{1}$
Correct Answer: $\frac{5}{1}$
Solution : $\frac{x^{3}+3y^{2}x}{y^{3}+3x^{2}y}=\frac{35}{19}$ Applying componendo and dividendo method, $\frac{x^{3}+3y^{2}x - y^{3}-3x^{2}y}{x^{3}+3y^{2}x + y^{3}+3x^{2}y}=\frac{35-19}{35+19} = \frac{16}{54}$ ⇒ $\frac{(x-y)^3}{(x+y)^3} = \frac{8}{27}$ ⇒ $\frac{x-y}{x+y} = \frac{2}{3}$ ⇒ $\frac{x+y}{x-y}=\frac{3}{2}$ Again, applying the componendo and dividendo method to solve the equation. $\frac{x+y+x-y}{x+y-x+y}=\frac{3+2}{3-2}$ $\Rightarrow\frac{x}{y} = \frac{5}{1}$ Hence, the correct answer is $\frac {5}{1}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Simplify the given expression. $(x - 2y)(y - 3x) + (x + y)(x - y) + (x - 3y)(2x + y)$
Question : If $(2 x+3 y+4)(2 x+3 y-5)$ is equivalent to $\left(a x^2+b y^2+2 h x y+2 g x+2 f y+c\right)$, then what is the value of $\frac{g + f - c}{abh}$?
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $\frac{1}{x+2}=\frac{3}{y+3}=\frac{1331}{z+1331}=\frac{1}{3}$, then what is the value of $\frac{x}{x+1}+\frac{y}{y+6}+\frac{z}{z+2662}$?
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile