Question : If $x^2-8 x-1=0$, what is the value of $x^2+\frac{1}{x^2}?$
Option 1: 68
Option 2: 62
Option 3: 64
Option 4: 66
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 66
Solution : $x^2-8 x-1=0$ ⇒ $x^2 -1 = 8x$ Dividing both sides by $x$ $x-\frac{1}{x} = 8$ Squaring both sides, $(x-\frac{1}{x})^2 = 8^2$ ⇒ $x^2 + \frac{1}{x^2} - 2×x×\frac{1}{x} = 64$ $\therefore$ $x^2 + \frac{1}{x^2} = 64+2=66$ Hence, the correct answer is 66.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $x^{4}+\frac{1}{x^{4}}=34$, what is the value of $x^{3}-\frac{1}{x^{3}} $?
Question : If $x^2+\frac{1}{x^2}=66$, the value of $x-\frac{1}{x}$ is:
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile