Question : If $x^2-9x+1=0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $54$
Option 2: $108$
Option 3: $702$
Option 4: $810$
Correct Answer: $702$
Solution : Given: $x^2-9x+1=0$ Dividing both sides by $x$, we get, $⇒x-9+\frac{1}{x}=0$ $⇒x+\frac{1}{x}=9$ Cubing both sides, we get, $⇒(x+\frac{1}{x})^3=9^3$ $⇒x^3+\frac{1}{x^3}+3×x×\frac{1}{x}(x+\frac{1}{x})=729$ $⇒x^3+\frac{1}{x^3}+3×9=729$ $\therefore x^3+\frac{1}{x^3}=729-27=702$ Hence, the correct answer is $702$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $x\left(5-\frac{2}{x}\right)=\frac{5}{x}$, then the value of $x^2+\frac{1}{x^2}$ is:
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Question : If $x^4+x^{-4}=47, x>0$, then what is the value of $x+\frac{1}{x}-2?$
Question : If $x^2-7x+1=0$, what is the value of $(x+\frac{1}{x})$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile