Question : If $\tan A-\tan B-\tan C=\tan A \tan B \tan C$, what is the value of A in terms of B and C?
Option 1: $A = B + C$
Option 2: $A = 2 B - 2C$
Option 3: $A = B - C$
Option 4: $A=\frac{B-C}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $A = B + C$
Solution : Given, $\tan A-\tan B-\tan C=\tan A \tan B \tan C$ ⇒ $\tan A - \tan A \tan B \tan C = \tan B + \tan C$ ⇒ $\tan A(1-\tan B \tan C)= \tan B + \tan C$ ⇒ $\tan A = \frac{\tan B + \tan C}{1-\tan B \tan C}$ ⇒ $\tan A = \tan(B+C)$ $\therefore A = B + C$ Hence, the correct answer is $A = B + C$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$, then the value of $\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$ is:
Question : If $x+\frac{1}{x}=c+\frac{1}{c}$, then the value of $x$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $\sec A=\frac{5}{4}$, then the value of $\frac{\tan A}{1+\tan ^2 A}-\frac{\sin A}{\sec A}$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile