Question : If $m^n=169$, what is the value of $(m+1)^{n-1}$?
Option 1: 14
Option 2: 13
Option 3: 196
Option 4: 170
Correct Answer: 14
Solution : Given: $m^n=169$ ⇒ $m^n=13^2$ So, $m=13, n=2$ Now, $(m+1)^{n-1}$ = $(13+1)^{2-1}$ = $(14)^{1}$ = $14$ Hence, the correct answer is 14.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{(m^2+n^2)(m-n)-(m-n)^3}{(m^2 n-m n^2)}$ is:
Question : If $N=\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}$, then what is the value of $(N+\frac{1}{N})$?
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : What is the dimension of the kabaddi playing field for men?
Question : If the value of $\operatorname{cosec} A + \cot A = m$, then the value of $\operatorname{cosec} A - \cot A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile