Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Option 1: $60^{\circ}$
Option 2: $30^{\circ}$
Option 3: $45^{\circ}$
Option 4: $90^{\circ}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $60^{\circ}$
Solution : Given: $2\angle A=3\angle B=6\angle C$ ⇒ $ \angle A=3\angle C$ ⇒ $\angle B=2\angle C$ In $\triangle ABC$, $\angle A+\angle B+\angle C = 180^{\circ}$ ⇒ $3\angle C+2\angle C+\angle C=180^{\circ}$ ⇒ $6\angle C=180^{\circ}$ ⇒ $\angle C=30^{\circ}$ $\therefore \angle B= 2 × 30^{\circ}= 60^{\circ}$ Hence, the correct answer is $60^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The internal bisectors of the angles B and C of a triangle ABC meet at I. If $\angle$BIC = $\frac{\angle A}{2}$ + X, then X is equal to:
Question : The side $BC$ of a triangle $ABC$ is extended to $D$. If $\angle ACD = 120^{\circ}$ and $\angle ABC = \frac{1}{2} \angle CAB$, then the value of $\angle ABC$ is:
Question : $ABC$ is an isosceles triangle with $AB = AC$, The side $BA$ is produced to $D$ such that $AB = AD$. If $\angle ABC = 30^{\circ}$, then $\angle BCD$ is equal to:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : Let ABC be a right-angled triangle where $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Find the value of $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile