Question : In a triangle $XYZ$ right-angled at $Y$, if $XY=2\sqrt{6}$ and $XZ-YZ=2$, then $\sec X+\tan X$ is:
Option 1: $\frac{1}{\sqrt{6}}$
Option 2: $\sqrt{6}$
Option 3: $2\sqrt{6}$
Option 4: $\frac{\sqrt{6}}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{6}$
Solution : Given: $XY=2\sqrt{6}$ and $XZ-YZ=2$ So, $XY^2+YZ^2=XZ^2$ ------------------------------ (1) ⇒ $XZ^2-YZ^2=XY^2=(2\sqrt{6})^2$ ⇒ $(XZ+YZ)(XZ-YZ)=24$ ⇒ $XZ+YZ=12$ (As $XZ-YZ=2$) -------------------- (2) Now, after solving both equations, we get, $XZ=7$ and $YZ=5$ Now, $\sec X+\tan X$ = $\frac{7}{(2\sqrt{6})} + \frac{5}{(2\sqrt{6})} $ = $\frac{12}{(2\sqrt{6})}$ = $\sqrt{6}$ Hence, the correct answer is $\sqrt{6}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $\tan \frac{\pi}{6}+\sec\frac{\pi}{6}=x$, then find $x$.
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Question : $\triangle$ XYZ is a right-angled triangle and $\angle$Y = 90° If XY = 2.5 cm and YZ = 6 cm, then the circumradius of $\triangle$XYZ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile