Question : In the figure, in $\triangle {PQR}, {PT} \perp {QR}$ at ${T}$ and ${PS}$ is the bisector of $\angle {QPR}$. If $\angle {PQR}=78^{\circ}$, and $\angle {TPS}=24^{\circ}$, then the measure of $\angle {PRQ}$ is:
Option 1: 42$^{\circ}$
Option 2: 39$^{\circ}$
Option 3: 30$^{\circ}$
Option 4: 40$^{\circ}$
Correct Answer: 30$^{\circ}$
Solution : In $\triangle$PQR, PT $ \perp$ QR at T and PS is the bisector of $\angle$QPR $\angle$PQR = 78° and $\angle$TPS = 24° In $\triangle$PQT, $\angle$QPT = 180$^\circ$ – $\angle$PQR – $\angle$PTQ = 180$^\circ$ – 78$^\circ$ – 90$^\circ$ = 12$^\circ$ $\angle$SPQ = $\angle$QPT + $\angle$TPS = 12$^\circ$ + 24$^\circ$ = 36$^\circ$ Since PS is the bisector of $\angle$ QPR, $\angle$QPR = 2 × $\angle$SPQ = 2 × 36$^\circ$ = 72$^\circ$ In $\triangle$PQR, $\angle$ PRQ = 180$^\circ$ – $\angle$ PQR – $\angle$ QPR = 180$^\circ$ – 78$^\circ$ – 72$^\circ$ = 30$^\circ$ Hence, the correct answer is 30$^\circ$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle$PQR, $\angle$ PQR = $90^{\circ}$, PQ = 5 cm and QR = 12 cm. What is the radius (in cm) of the circumcircle of $\triangle$PQR?
Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:
Question : Two circles touch externally at P. QR is a common tangent of the circle touching the circles at Q and R. Then, the measure of $\angle QPR$ is:
Question : Circum-centre of $\triangle PQR$ is O. If $\angle QPR=55^{\circ}$ and $\angle QRP=75^{\circ}$, What is the value (in degree) of $\angle OPR$?
Question : In a $\triangle \mathrm{PQR}$ and $\triangle\mathrm{ABC}$, $\angle$P = $\angle$A and AC = PR. Which of the following conditions is true for $\triangle$PQR and $\triangle$ABC to be congruent?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile