Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:
Option 1: $40^{\circ}$
Option 2: $60^{\circ}$
Option 3: $80^{\circ}$
Option 4: $30^{\circ}$
Correct Answer: $80^{\circ}$
Solution : $\angle$QSR = 40$^\circ$ The exterior angle property of a triangle i.e. the exterior angle of a triangle is equal to the sum of the interior opposite angle of a triangle. In $\triangle$PQR $\angle$PRT = $\angle$PQR + $\angle$QPR (exterior angle property of a triangle) ⇒ 2b = 2a + $\angle$QPR --------------------- (1) In $\triangle$SQR $\angle$SRT = $\angle$SQR + $\angle$QSR (exterior angle property) ⇒ b = a + 40 --------------------------- (2) Put the value of b in equation (1) 2(a + 40) = 2a + $\angle$QPR ⇒ 2a + 80$^\circ$ = 2a + $\angle$QPR ⇒ 80$^\circ$ = $\angle$QPR ⇒ $\angle$QPR = 80$^\circ$ Hence, the correct answer is 80$^\circ$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\Delta PQR,$ $\angle P : \angle Q : \angle R = 1: 3 : 5$, what is the value of $\angle R - \angle P$?
Question : Internal bisectors of $\angle$ B and $\angle$ C of $\triangle$ ABC meet at O. If $\angle$ BAC = $80^{\circ}$, then the value of $\angle$ BOC is:
Question : The sides $P Q$ and $P R$ of $\triangle P Q R$ are produced to points $S$ and $T$, respectively. The bisectors of $\angle S Q R$ and $\angle T R Q$ meet at $\mathrm{U}$. If $\angle \mathrm{QUR}=59^{\circ}$, then the measure of $\angle \mathrm{P}$ is:
Question : In a $\triangle P Q R, \angle P=90^{\circ}, \angle R=47^{\circ}$ and $P S \perp Q R$. Find the value of $\angle Q P S$.
Question : In the figure, in $\triangle {PQR}, {PT} \perp {QR}$ at ${T}$ and ${PS}$ is the bisector of $\angle {QPR}$. If $\angle {PQR}=78^{\circ}$, and
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile