12 Views

Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:

Option 1: $40^{\circ}$

Option 2: $60^{\circ}$

Option 3: $80^{\circ}$

Option 4: $30^{\circ}$


Team Careers360 6th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: $80^{\circ}$


Solution :
$\angle$QSR = 40$^\circ$
The exterior angle property of a triangle i.e. the exterior angle of a triangle is equal to the sum of the interior opposite angle of a triangle.
In $\triangle$PQR
$\angle$PRT = $\angle$PQR + $\angle$QPR (exterior angle property of a triangle)
⇒ 2b = 2a + $\angle$QPR --------------------- (1)
In $\triangle$SQR
$\angle$SRT = $\angle$SQR + $\angle$QSR (exterior angle property)
⇒ b = a + 40 --------------------------- (2)
Put the value of b in equation (1)
2(a + 40) = 2a + $\angle$QPR
⇒ 2a + 80$^\circ$ = 2a + $\angle$QPR
⇒ 80$^\circ$ = $\angle$QPR
⇒ $\angle$QPR = 80$^\circ$
Hence, the correct answer is 80$^\circ$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books