2 Views

Question : Suppose $\triangle ABC$ be a right-angled triangle where $\angle A=90°$ and $AD\perp BC$. If the area of $\triangle ABC =40$ cm$^{2}$ and $\triangle ACD =10$ cm$^{2}$ and $\overline{AC}=9$ cm, then the length of $BC$ is:

Option 1: 12 cm

Option 2: 18 cm

Option 3: 4 cm

Option 4: 6 cm


Team Careers360 13th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: 18 cm


Solution : According to the question,
Given: AC = 9 cm

Area of $\triangle$ABC = 40 cm 2
Area of $\triangle$ADC = 10 cm 2
$\triangle$BAC ∼ $\triangle$ADC
⇒ $\frac{\text{Area of }\triangle ABC}{\text{Area of } \triangle ADC}=\frac{AB^{2}}{AD^{2}}=\frac{BC^{2}}{AC^{2}}$
(In similar triangles, the ratio of their area is the square of the ratio of corresponding sides.)
⇒ $\frac{40}{10}=\frac{BC^{2}}{(9)^{2}}$
⇒ $\frac{40}{10}\times 81=BC^{2}$
⇒ $BC=18$ cm
Hence, the correct answer is 18 cm.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books