Question : The greatest fraction among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15} \text{ and } \frac{7}{8} \text{ is:}$
Option 1: $\frac{7}{8}$
Option 2: $\frac{11}{15}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{2}{3}$
Correct Answer: $\frac{7}{8}$
Solution : Given numbers are = $\frac{2}{3},\frac{5}{6},\frac{11}{15},\frac{7}{8}$ LCM of denominators (3, 6, 15, 8) = ${3×2×5×4} = 120$ Making all denominators the same for comparison, $⇒ \frac{2}{3}\times \frac{40}{40} = \frac{80}{120} $ $⇒ \frac{5}{6}\times \frac{20}{20} = \frac{100}{120} $ $⇒ \frac{11}{15}\times \frac{8}{8} = \frac{88}{120} $ $⇒ \frac{7}{8}\times \frac{15}{15} =\frac{105}{120} $ Now, compare the numerators (105 > 100 > 88 > 80) So, $\frac{7}{8}$ is the greatest fraction. Hence, the correct answer is $\frac{7}{8}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Solve the following. $\frac{24 \div \frac{3}{8} \text { of }(8+2 \times \overline{7-3})+\left[\frac{2}{11} \div \frac{4}{55}-\left\{\frac{5}{8}+\frac{6}{16}\right\}\right]}{32 \div \overline{15-7}+75 \div(6+15 \div 3+4)} $
Question : What is the positive value of the following expression? $\sqrt{36 \div 15 \text { of } 2 \text { of }[25 \times 4 \div 4 \text { of }\{29-(8-11) \div(9 \times 5 \div 5 \text { of } 3)\}]}$
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : The value of $\frac{5-2 \div 4 \times[5-(3-4)]+5 \times 4 \div 2 \text { of } 4}{4+4 \div 8 \text { of } 2 \times(8-5) \times 2 \div 3-8 \div 2 \text { of } 8}$ is:
Question : The greatest among the following numbers $(3)^{\frac{1}{3}}, (2)^{\frac{1}{2}}, 1, (6)^{\frac{1}{6}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile