Question : The sides $P Q$ and $P R$ of $\triangle P Q R$ are produced to points $S$ and $T$, respectively. The bisectors of $\angle S Q R$ and $\angle T R Q$ meet at $\mathrm{U}$. If $\angle \mathrm{QUR}=59^{\circ}$, then the measure of $\angle \mathrm{P}$ is:
Option 1: 31o
Option 2: 62o
Option 3: 41o
Option 4: 49o
Correct Answer: 62 o
Solution :
$\angle QUR = 90 - \frac{\angle P}{2}$ ⇒ $\frac{\angle P}{2}= 90 - 59$ ⇒ $\frac{\angle P}{2}= 31$ ⇒ $\angle P = 2 × 31 = 62^{\circ}$ Hence, the correct answer is $ 62^{\circ}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=54^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle \mathrm{BIC}$ is:
Question : In a $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at $\mathrm{O}$. If $\angle \mathrm{BOC}=142^{\circ}$, then the measure of $\angle \mathrm{A}$ is:
Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:
Question : In $\triangle$ABC, $\angle$A = 66°. AB and AC are produced at points D and E, respectively. If the bisectors of $\angle$CBD and $\angle$BCE meet at the point O, then $\angle$BOC is equal to:
Question : In a $\triangle P Q R, \angle P=90^{\circ}, \angle R=47^{\circ}$ and $P S \perp Q R$. Find the value of $\angle Q P S$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile