Question : The value of $\frac{3\left(\operatorname{cosec}^2 26^{\circ}-\tan ^2 64^{\circ}\right)+\left(\cot ^2 42^{\circ}-\sec ^2 48^{\circ}\right)}{\cot \left(22^{\circ}-\theta\right)-\operatorname{cosec}^2\left(62^{\circ}+\theta\right)-\tan \left(\theta+68^{\circ}\right)+\tan ^2\left(28^{\circ}-\theta\right)}$ is:
Option 1: 3
Option 2: 4
Option 3: –1
Option 4: –2
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –2
Solution : $\frac{3\left(\operatorname{cosec}^2 26^{\circ}-\tan ^2 64^{\circ}\right)+\left(\cot ^2 42^{\circ}-\sec ^2 48^{\circ}\right)}{\cot \left(22^{\circ}-\theta\right)-\operatorname{cosec}^2\left(62^{\circ}+\theta\right)-\tan \left(\theta+68^{\circ}\right)+\tan ^2\left(28^{\circ}-\theta\right)}$ $= \frac{3\left(\operatorname{sec}^2 64^{\circ}-\tan ^2 64^{\circ}\right)+\left(\cot ^2 42^{\circ}-\operatorname{cosec} ^2 42^{\circ}\right)}{\tan \left(68^{\circ}+\theta\right)-\operatorname{cosec}^2\left(62^{\circ}+\theta\right)-\tan \left(\theta+68^{\circ}\right)+\cot ^2\left(62^{\circ}+\theta\right)}$ $= \frac{3\left(1\right)+\left(\cot ^2 42^{\circ}-1-\cot ^2 42^{\circ}\right)}{-(\operatorname{cosec}^2\left(62^{\circ}+\theta\right)-\cot ^2\left(62^{\circ}+\theta\right))}$ $= \frac{3-1}{-1}$ $= -2$ Hence, the correct answer is –2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : Let $0^{\circ}<\theta<90^{\circ}$, $\left(1+\cot ^2 \theta\right)\left(1+\tan ^2 \theta\right) × (\sin \theta-\operatorname{cosec} \theta)(\cos \theta-\sec \theta)$ is equal to:
Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Question : For any real values of $\theta, \sqrt{\frac{\sec\theta \:-\: 1}{\sec\theta \:+\: 1}}=$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile