Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Option 1: $1 \frac{3}{10}$
Option 2: $2 \frac{7}{10}$
Option 3: $2 \frac{3}{7}$
Option 4: $1 \frac{3}{7}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1 \frac{3}{10}$
Solution : $2 \frac{3}{5} \div[2 \frac{1}{3} \div\{4 \frac{1}{3}-(2 \frac{1}{2}+\frac{2}{3})\}]$ $= 2 \frac{3}{5} \div[2 \frac{1}{3} \div\{4 \frac{1}{3}-(\frac{5}{2}+\frac{2}{3})\}]$ $= 2 \frac{3}{5} \div[2 \frac{1}{3} \div\{4 \frac{1}{3}-(\frac{15+4}{6})\}]$ $= 2 \frac{3}{5} \div[2 \frac{1}{3} \div\{\frac{13}{3}-\frac{19}{6}\}]$ $= 2 \frac{3}{5} \div[2 \frac{1}{3} \div\{\frac{26-19}{6}\}]$ $= 2 \frac{3}{5} \div[\frac{7}{3} \div\frac{7}{6}]$ $= 2 \frac{3}{5} \div[\frac{7}{3} \times\frac{6}{7}]$ $= \frac{13}{5} \div 2$ $= \frac{13}{5} \times \frac{1}{2}$ $= \frac{13}{10}$ $= 1\frac{3}{10}$ Hence, the correct answer is $1\frac{3}{10}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of $\left(\frac{2+7 \times 7 \div 9 \text { of } 9+6 \div 6 \times 2}{4 \div 4 \text { of } 5+7 \times 7 \div 7-6+4}\right)$ is:
Question : The value of $\frac{3+8 \times 8 \div 8 \text { of } 8+7 \div 7 \times 2}{5 \div 5 \text { of } 4+3 \times 3 \div 3-3+2}$ is:
Question : What is the value of $\frac{7 \times 4 \div 8}{5 \times 25 \div 125}+\frac{5 \times 4 \div 8}{8 \times 4 \div 16}-\frac{7 \times 4 \div 2}{8 \times 7 \div 4}$?
Question : Solve: $\left(1+\frac{5}{6}+\frac{7}{8}+\frac{11}{12}\right) \div\left(\frac{3}{4}-\frac{5}{8}\right)$
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile