Question : The value of the expression $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ is:
Option 1: $1235$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $0$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ $=\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \cot90^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ We know the value of $\cot90°=0$ So, putting this value, the above expression becomes 0. Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of the following is: $\frac{\left (\tan20^{\circ} \right )^{2}}{\left (\operatorname{cosec70^{\circ}} \right )^{2}}+\frac{\left (\cot20^{\circ} \right )^{2}}{\left (\sec70^{\circ} \right )^{2}}+2\tan15^{\circ} \tan45^{\circ} \tan75^{\circ}$
Question : Evaluate the given expression: $\cos ^2 36^{\circ}+\cos 54^{\circ} \cdot \sin 36^{\circ}+\left(\frac{\tan 26^{\circ}}{\cot 64^{\circ}}\right)$
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Question : The value of the following is: $\left ( \frac{\sin47^{\circ}}{\cos43^{\circ}} \right )^{2}+\left ( \frac{\cos43^{\circ}}{\sin47^{\circ}} \right )^{2}-4\cos^{2}45^{\circ}$
Question : The value of $\frac{\sec 54^{\circ}}{\operatorname{cosec} 36^{\circ}}+\frac{\tan 70^{\circ}}{\cot 20^{\circ}}-2 \tan 45^{\circ}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile