Question : What is the value of $\frac{\frac{1}{2} \times \frac{1}{24} \div \frac{1}{36}+\frac{1}{48}-\frac{1}{60}}{\frac{1}{12}+\frac{1}{24}+\frac{1}{36} \times \frac{1}{6}} ?$
Option 1: $\frac{1841}{119}$
Option 2: $\frac{1629}{280}$
Option 3: $\frac{1131}{124}$
Option 4: $\frac{733}{145}$
Correct Answer: $\frac{1629}{280}$
Solution :
Given: $\frac{\frac{1}{2} \times \frac{1}{24} \div \frac{1}{36}+\frac{1}{48}-\frac{1}{60}}{\frac{1}{12}+\frac{1}{24}+\frac{1}{36} \times \frac{1}{6}}$
= $\frac{\frac{1}{2} \times \frac{1}{24} \times \frac{36}{1}+\frac{1}{48}-\frac{1}{60}}{\frac{1}{12}+\frac{1}{24}+\frac{1}{36} \times \frac{1}{6}}$
= $\frac{\frac{3}{4}+\frac{1}{48}-\frac{1}{60}}{\frac{1}{12}+\frac{1}{24}+ \frac{1}{216}}$
= $\frac{\frac{180+5-4}{240}}{\frac{18+9+1}{216}}$
= $\frac{\frac{181}{240}}{\frac{28}{216}}$
= $\frac{181}{240}\times\frac{216}{28}$
= $\frac{1629}{280}$
Hence, the correct answer is $\frac{1629}{280}$.
Related Questions
Know More about
Staff Selection Commission Multi Tasking ...
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Get Updates BrochureYour Staff Selection Commission Multi Tasking Staff Exam brochure has been successfully mailed to your registered email id “”.