Question : What is the value of (22 + 1)(24+1)(28 + 1)(216 + 1) .........(2128 + 1)?
Option 1: $\frac{2^{256}-1}{2}$
Option 2: $\frac{2^{256}-1}{3}$
Option 3: $2^{256}-1$
Option 4: $\frac{2^{256}-1}{4}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2^{256}-1}{3}$
Solution : $(2^2 + 1) (2^4 + 1) (2^8 + 1) (2^{16} + 1) ........ (2^{128} + 1)$ Divide by $(2^2 - 1)$ in numerator and denominator = $\frac{1}{(2^2 - 1)}[(2^2 - 1)(2^2 + 1) (2^4 + 1) (2^8 + 1) (2^{16} + 1) ........ (2^{128} + 1)]$ = $\frac{1}{(2^2 - 1)}[(2^4 - 1) (2^4 + 1) (2^8 + 1) (2^{16} + 1) ........ (2^{128} + 1)]$ = $\frac{1}{(2^2 - 1)}[(2^8 - 1) (2^8 + 1) (2^{16} + 1) ........ (2^{128} + 1)]$ = $\frac{1}{(2^2 - 1)}[(2^{16} - 1) (2^{16} + 1) ........ (2^{128} + 1)]$ = $\frac{1}{(2^2 - 1)}(2^{256} - 1)$ = $\frac{(2^{256} - 1)}{3}$ Hence, the correct answer is $\frac{(2^{256} - 1)}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Find the value of the given expression: $\frac{(4\frac{1}{3}+3\frac{1}{3}\times 1\frac{4}{5}\div 3\frac{3}{4}\times (1\frac{1}{2}+1\frac{1}{3}))}{(\frac{2}{3}\div \frac{5}{6}\times \frac{2}{3})}$
Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Question : What is the value of $\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)$?
Question : If $x+\frac{1}{x}=2 K$, then what is the value of $x^4+\frac{1}{x^4}$?
Question : The value of $\frac{3+8 \times 8 \div 8 \text { of } 8+7 \div 7 \times 2}{5 \div 5 \text { of } 4+3 \times 3 \div 3-3+2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile