Question : What is the value of $\frac{(a^2+b^2)(a-b)-(a-b)^3}{a^2b-ab^2}?$
Option 1: $0$
Option 2: $1$
Option 3: $–1$
Option 4: $2$
Correct Answer: $2$
Solution : Given: $\frac{(a^2+b^2)(a-b)-(a-b)^3}{a^2b-ab^2}$ = $\frac{(a-b)(a^2+b^2-(a-b)^2)}{ab(a-b)}$ = $\frac{a^2+b^2-a^2+2ab-b^2}{ab}$ = $\frac{2ab}{ab}$ = $2$ Hence, the correct answer is $2$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the value of $\frac{(a^2+b^2)(a-b)-(a^3-b^3)}{a^2b-ab^2}?$
Question : The numerical value of $\frac{(a–b)^{2}}{(b–c)(c–a)}+\frac{(b–c)^{2}}{(c–a)(a–b)}+\frac{(c–a)^{2}}{(a–b)(b–c)}$ is: $(a\neq b\neq c)$
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Question : What is the value of m in the quadratic equation $x^{2}+mx+24=0$, if one of its roots is $\frac{3}{2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile