Question : What is the value of $\frac{(a^2+b^2)(a-b)-(a^3-b^3)}{a^2b-ab^2}?$
Option 1: 0
Option 2: 1
Option 3: –1
Option 4: 3
Correct Answer: –1
Solution : Given: $\frac{(a^2+b^2)(a-b)-(a^3-b^3)}{a^2b-ab^2}$ = $\frac{(a^2+b^2)(a-b)-(a-b)(a^2+ab+b^2)}{a^2b-ab^2}$ = $\frac{(a-b)(a^2+b^2-a^2-ab-b^2)}{ab(a-b)}$ = $\frac{-ab}{ab}$ = $-1$ Hence, the correct answer is –1.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the value of $\frac{(a^2+b^2)(a-b)-(a-b)^3}{a^2b-ab^2}?$
Question : The numerical value of $\frac{(a–b)^{2}}{(b–c)(c–a)}+\frac{(b–c)^{2}}{(c–a)(a–b)}+\frac{(c–a)^{2}}{(a–b)(b–c)}$ is: $(a\neq b\neq c)$
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Question : If $\frac{x}{(b–c)(b+c–2a)}=\frac{y}{(c–a)(c+a–2b)}=\frac{z}{(a–b)(a+b–2c)}$, then $(x+y+z)$ is:
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile