Question : Which of the following expressions is equal to the expression $\frac{x^2-3 x+2}{x^2-4}$?
Option 1: $\frac{x+1}{x-2}$
Option 2: $\frac{x-1}{x+2}$
Option 3: $\frac{x+1}{x+2}$
Option 4: $\frac{x-1}{x-2}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{x-1}{x+2}$
Solution : $\frac{x^2-3 x+2}{x^2-4}$ = $\frac{(x-2)(x-1)}{(x-2)(x+2)}$ = $\frac{(x-1)}{(x+2)}$ Hence, the correct answer is $\frac{(x-1)}{(x+2)}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Find the value of the expression $\frac{x^2-1}{x-1}-\frac{x^2-9}{x-3}$.
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : The value of $x$ in the expression $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ is:
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : The 12th term of the series $\frac{1}{x}+\frac{x+1}{x}+\frac{2x+1}{x}+...$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile